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SUMMARY

The vision of Grid computing is to facilitate world-wide resource sharing among
distributed collaborations. With the help of numerous national and international Grid
projects this vision is becoming reality and Grid systems are attracting an ever increasing
user base. However, Grids are still quite complex software systems whose efficient use is
a difficult and error prone task.

In this paper we present performance engineering techniques that aim to facilitate an
efficient use of Grid systems, in particular systems that deal with the management of
large scale data sets in the tera- and petabyte range (also referred to as Data Grids ).
These techniques are applicable at different layers of a Grid architecture and we discuss
the tools required at each of these layers to implement them. Having discussed important
performance engineering techniques we investigate how major Grid projects deal with
performance issues particularly related to Data Grids and how they implement the
techniques presented.

1. Introduction

Grid computing has emerged over the past few years as a viable technique to enable large-scale
resource sharing among geographically distributed collaborations forming a so-called Virtual
Organization (VO). In particular, advances in network technologies that significantly increased
throughput over wide area connections paved the way to the Grid vision of truly world-
wide computing. Many communities already showed interest in leveraging Grid technologies
for coping with the ever increasing requirements in their field of expertise. Examples
include governmental organizations, biotechnology and health organizations, physicists, and
economists, to name but a few. The diversity of the user communities is reflected in the way
Grid technology is used. The envisaged usage patterns range from distributed supercomputing
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over high-throughput and data intensive computing to on-demand computing and collaborative
computing [15].

The existence of basic Grid middleware such as Globus [14], Legion [17], or UNICORE [35]
allowed the construction of first Grid environments, and an ever increasing number of projects
in Europe, the U.S., and the Asia-Pacific are looking into higher level Grid services and
customized Grid solutions for specific application domains. The aim of the Global Grid Forum
(GGF) is to promote and support the development, deployment, and implementation of Grid
technologies and applications via the creation and documentation of “best practices” - technical
specifications, user experiences, and implementation guidelines [16].

Despite all these efforts Grid computing is not yet in the mainstream of computing,
mainly because of the complexity involved in wide area computing and the lack of high level
programming environments and associated performance engineering tools and techniques.

In this paper we discuss major performance engineering techniques in the field of data
intensive Grid computing (also referred to as Data Grid). These techniques aim to minimize
costs incurred by accessing data in a Grid environment and thereby increase the performance
of single applications and the throughput of the entire system. In order to systematically
categorize these techniques we first identify critical performance issues in Data Grids and
present a generic layered Grid architecture in which our techniques can be implemented.
Subsequently, we examine a set of major Grid projects and discuss how they deal with the
performance issues identified.

The remainder of this paper is organized as follows: in Section 2 we introduce the concept
of Data Grids and the major performance issues to be taken into account in this context,
we present some key application areas for Data Grids, and discuss a generic layered Grid
architecture. Section 3 presents performance engineering techniques we believe to be most
important to cope with the challenges intrinsic to Data Grids. The application of these
techniques in major Grid projects is studied in Section 4 and we conclude the paper with
some concluding remarks in Section 5.

2. Data Grids
An increasing number of scientific disciplines are using large (potentially distributed)
collections of data reaching the tera- and even petabyte scale. These datasets need to be made
seamlessly available to large scale distributed user communities who want to analyze this data,
potentially using computationally expensive techniques. Grid architectures that deal with the
management of such large scale data collections are typically referred to as Data Grids [11, 39].

In this section we first give an overview of Data Grid application domains and then present
the main characteristics of Data Grids pointing out the major issues pertinent to performance
engineering. Finally, we present a generic Data Grid architecture that allows us to deal
efficiently with these characteristics.
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Figure 1. HEP Multi-Tier Architecture

2.1. Data Grid Application Domains

Data Grid technologies can be leveraged in a variety of application domains. As motivating
examples we briefly present the highlights of three application areas that are tackled within the
EU DataGrid Project [12, 13]: High Energy Physics, Bio Informatics, and Earth Observation.

High Energy Physics The High Energy Physics (HEP) community has the need of sharing
information, very large databases (several petabytes) and large computational resources
(thousands of fast PCs) throughout its centers distributed across Europe, and in several other
countries all over the world. One of the main concerns of the HEP community is to improve
the efficiency and speed of their data analysis by integrating the processing power and data
storage systems available at distributed sites. The world’s most powerful particle accelerator
(the Large Hadron Collider (LHC)) is currently being constructed at CERN and is expected
to produce several petabytes of data per year starting in 2007. Several thousand researchers
all over the world will access this data for their analysis; a multi-tier architecture has been
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Figure 2. CMS Environment

devised for distributing the data world wide (cf. Figure 1). An overview of the HEP community
requirements can be found in [40].

Practical experience, that the HEP community has gained in using Grid environments,
is reported for example in [9] where Monte Carlo simulation inside the CMS experiment is
described. Monte Carlo simulation is a necessary pre-requisite for physicists to validate their
analysis algorithms which will eventually be applied to the real data produced by the LHC.
The whole simulation consists of multiple steps involving different computational and storage
requirements. The first step (CMKIN) takes about 0.5 seconds on a 1 GHz PIII machine and
produces a 50 KByte file per physics event. The following (CMSIM) step is several orders
of magnitudes more complex, producing about 1.8MB of data and taking about 6 minutes
per physics event. Both steps are processed in a pipelined fashion, each stage of the pipeline
processing 125 physics events. In total, some 500 million events need to be produced before
2007. The whole simulation is automated within the CMS production environment consisting
of a database RefDB keeping track of the simulation requests and progress, an automatic
submission system IMPALA/BOSS and the BOSS database keeping track of the progress of
the individual jobs. Figure 2 illustrates how this environment is integrated with a Grid system
(in this case the EDG system, cf. Section 4.1). In the first step, the CMKIN jobs run on
computing resources available for CMS simulation, the output files are stored on associated
storage resources and a replica manager (using the replica catalog system) keeps track of the
file location. Subsequently, CMSIM jobs are directed by the workload management system to
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Figure 3. Parallel Biomedical Image Reconstruction

computing resources having access to the previously produced files. Progress is monitored in
the CMS BOSS database.

Bio-Informatics The field of Bio-Informatics (also known as Computational Biology) has
led to numerous important discoveries and practical applications and is considered as one of
today’s most promising and expanding scientific fields. The recent explosion of data, acquired
by automated gene sequencers and other experimental techniques, requires vast amounts of
computing power to analyze the biological functions of genes. There is also a main difference
to the two other applications mentioned here since Bio-Informarics deploys many traditional
parallel computing models (incl. the usage of MPI). Additionally, thousands of databases
contain already collected molecular data, which could be correlated and exploited. Other
examples of biomedical applications include mining of biomedical databases and image re-
construction and comparison.

Image reconstruction, for instance, is a computationally intensive task that requires the
exploitation of massive parallelism. The reconstruction of high resolution (10242) 2D objects
takes about 3 days; 3D images with the same resolution (10243) will take about 278 years on
a standard sequential machine. Fortunately, massive parallelism can be exploited quite easily
by running the reconstruction only on subsets of the original image (cf. Figure 3) yielding a
parallel efficiency of more than 80% [38].

Content based queries of medical images, on the other hand, first require analyzing image
metadata to reduce the search space. Subsequently analysis algorithms are run on the candidate
images which may be distributed on many biomedical sites. This kind of search is typically
performed through biomedical Grid portals as depicted in Figure 4.

Today, the Bio-Informatics community lacks the necessary infrastructure to process all this
data. Therefore, the development of an international infrastructure, which will provide the
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Figure 4. A Grid Portal to Biomedical Image Databases

means of correlating large amounts of data in a transparent way, is of great interest. More
information on biomedical requirements can, for instance, be found in [37].

Earth Observation Earth Observation Science applications often require large computational
power and access to large data files stored in geographically distributed archives [41]. One
example of such applications is GOME (Global Ozone Monitoring Experiment) with the goal
to study ozone distribution patterns in the Earth’s atmosphere over a given period of time. In
1995 ESA launched the European Research Satellite 2 (ERS-2) including GOME.

Each day 14 data files of 15 MB are acquired. The complete data-set acquired by GOME
since June 1995 amounting to 77 GB/year is contained in the ESA mass storage archive. More
recent instruments produce up to 5GB/day. The total data volume stored in the ESA archives
amounts to more than 800 TB. The data is processed and validated against ground based
measurements (collected by LIDAR devices) to produce a global map of ozone concentration
and distribution. Figure 5 illustrates how the raw satellite data is processed to so called Level 2
products which are subsequently validated and visualized. Some indication of the data volumes
involved can also be found in Figure 5. A critical issue for running this kind of applications on
a Grid environment is the caching of Level 2 data such that it does not have to be re-produced
for every single query.
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Figure 5. GOME Analysis Architecture

2.2. Data Grid Characteristics

Data Grids are a specialization in the general field of Grid computing dealing with the
management of large amounts of data in the tera- and petabyte scale. Such large data
volumes need to be stored on hierarchical storage devices, including tape based mass storage
systems, which are, for the time being, quite heterogeneous in nature. Network performance
is of paramount importance when dealing with large datasets over the wide area. Finally,
Data Grid applications are typically high throughput applications rather than traditional high
performance ones. In summary, the key characteristics of Data Grids include:

• Large datasets
• Heterogeneous storage systems
• Impact of network characteristics
• High throughput computing

We are now going to discuss each of these items in more detail in order to derive the
requirements for the performance engineering techniques we present in the following section.
For more definitions on Grid Data Management issues, we refer the reader to [31].

Large datasets Although the common denominator of Data Grid applications is that they
deal with large amounts of data, there are significant differences with respect to data creation
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and access patterns. For instance, data in High Energy Physics is produced at a single location
(the detector) while biomedical data mining applications leverage a large number of already
existing databases which are located virtually anywhere in the world. Access patterns range
from sequential to chaotic schemes and may be read only or read/write access. Data Grid
architectures are required to deal with all these different characteristics, however, better
performance can be obtained if the usage patterns of certain applications are known a-priori
and major gains can be made if data is used primarily in write once, read often mode.

Heterogeneous storage systems A distinguishing feature of Grid computing is that it is based
on heterogeneous environments. This is true for computational (clusters, SMPs, DMMPs) as
well as storage devices. Hierarchical storage devices, in particular, exhibit huge differences in
access latencies, ranging from seconds to several hours, depending whether the data is on disk
or tape and whether the tape is already mounted or not. It is of paramount importance to any
Data Grid architecture that these latency variations are appropriately taken into account [33].
Moreover, most hierarchical storage systems are already well established and used for daily
production outside the Grid. Grid middleware is therefore required to interface to these legacy
systems with as little perturbations as possible.

Impact of network characteristics Dealing with large datasets over wide area networks
requires the exploitation of high performance networks in order to avoid bottlenecks. With
recent advances, network bandwidth significantly increased enabling fast and reliable data
transfer; for instance, GridFTP [1] allows for parallel streams for increasing the throughput
of data intensive applications. However, many high performance distributed applications use
only a small fraction of the available bandwidth due to improperly tuned network settings.
Even though the networking community has been working for a long time on TCP buffer size
tuning and parallel streams, these findings are not yet widely used in the Grid community.
In addition, network resources are mostly not entirely dedicated to Grid computing which
introduces additional uncertainties.

High throughput computing Data Grid applications are typically more interested in achieving
high throughput than on exploiting the highest possible performance within a single executable.
Classical High Performance Computing (HPC) tries to minimize the execution time of a single
program by distributing the computational workload among multiple CPUs, often on massively
parallel architectures. This mode of computing is also referred to as parallel computing. Many
techniques and programming languages have been developed that help the programmer in
parallelizing applications [2, 20, 26, 29].

On the other hand, High Throughput Computing (HTC) is more concerned with
environments that can deliver large amounts of processing power over large periods of time [25].
It is more concerned with the overall performance of a set of applications over time rather than
the performance of a single applications. Of course, an adequate performance of the individual
applications is ultimately also important for HTC, but the description of related techniques
is beyond the scope of this paper and can be found in the traditional HPC literature [2].
Grid environments (although potentially being comprised of HPC components [23, 24]) are
typically used in a HTC style since they encompass many heterogeneous resources from
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different administrative domains which are used by large heterogeneous user groups. However,
as pointed out Bio-Informatics applications often follow also the traditional High Performance
computing approach.

2.3. A Data Grid Architecture

A Data Grid architecture is a specialization of a general Grid architecture. It contains specific
components to efficiently deal with the problems pertinent to data intensive computing, such
as data storage and transport mechanisms, high performance networks, and higher level tools
for data and workload management, which are introduced below.

A generic Grid architecture is defined in [21] and consists of multiple layers as depicted in
Figure 6. Data Grid requirements are in particular dealt with by a set of components belonging
to each of these layers. In the following paragraph we briefly list these components and their
associated layers before we discuss their implications to Data Grid performance engineering in
Section 3 in greater detail. There are certainly other components that have a large impact on
the overall performance of a Data Grid. However, we focus deliberately on the ones concerned
with data handling to give the discussion an appropriate focus.

• Components on the Fabric layer implement local, resource-specific operations. In Data
Grids we are particularly concerned with local data storage systems and their
interaction with local compute resources.

• The Connectivity layer interconnects Grid resources and facilitates data and information
exchange among them. Data Grids usually require efficient network protocols.

• In the Resource layer, which is providing information and management protocols, a Data
Grid architecture is concerned with efficient data transport protocols.

• Multiple Grid resources are coordinated by components of the Collective layer. Here
we find global data management systems that provide a global view of the data
stored in a Data Grid as well as workload management systems that perform global
scheduling.
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Layer Component

Fabric Data Store
Connectivity Networking
Resource Data Transport
Collective Data Management

Workload Management

Table I. Data Grid Layers and Selected Components

• Finally, applications employ the services provided in these layers, mainly from the
collective layer, but potentially also access lower level services, either directly or through
application domain specific portals.

Table I summarizes the components important to Data Grids and their mapping in the
layers of a general Grid architecture.

3. Performance Engineering Techniques

Given the characteristics of Data Grid applications discussed above, the question that will guide
us throughout the remainder of this paper is as follows: Which techniques can be leveraged to
optimize the usage of Grid resources and what performance information is a pre-requisite to
these techniques?

We deliberately focus on techniques related to data handling; performance engineering
techniques related to CPU usage are out of the scope of this paper.

The following areas of performance engineering techniques can be identified as the ones
having major impact on the overall performance of a Data Grid:

• Data Access,
• Networking,
• Replica Management,
• Replica Optimization, and
• Scheduling.

In discussing these techniques we also identify components that are required in the individual
layers of a Data Grid architecture to facilitate them.

3.1. Data Access

For a Data Grid, access to large amounts of data is vital, where data is usually distributed
and sometimes replicated. Before we go into detail with global data access and replication, we
need to discuss local data access and where data is actually stored.

Several kinds of storage technologies can be considered ranging from simple files systems
to complex (distributed) database management systems. Due to the heterogeneity of existing
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storage technologies, Grids aim for a unique interface to data and storage systems. In addition,
a local data store at a given site can consist of secondary and tertiary storage devices with
different characteristics as regards access latency, availability and lifetime.

Local data access needs to take care of storing and retrieving data in an optimal way, i.e.
performance engineering techniques are required, especially if hierarchical storage devices are
used where caching techniques are applied in order to deal with fast data access. For example,
a file needs to be opened for read access; another file needs to be stored on a fast cache and
then written to a permanent, tertiary storage system. Apart from allowing access to data it is
also important to guarantee the required space to store the data produced by an application.
This can be achieved by space reservation on the target storage resource. Standards like the
Storage Resource Manager (SRM) [8] take care of such functionalities and their optimization
(see later in this paper).

Other important points are the data access granularity as well as remote data access (also
called remote I/O) over a wide area network. Typically, the data access granularity is file
based. However, also object based data access granularities are available [31]. This influences
the way remote data access is done. Storage appliances like SRM are implemented in the fabric
layer. In the remainder of this paper, we will mainly focus on the file level granularity and
thus mainly talk about file access and file replication.

3.2. Networking

Dealing with large datasets over wide area networks requires the exploitation of high
performance networks in order to avoid bottlenecks. Traditional techniques are multi-casting
or allowing for parallel streams for file transfers. One goal of a typical Data Grid application
is to identify the sites with the best network connections with respect to specific sites. For
instance, output data should be stored at those sites that have the highest network bandwidth
to the production site. In addition, files should be retrieved from those sites that have the
highest network bandwidth to a particular destination site. Note that network performance
only is not an optimal criterion for selecting sites since the performance and availability of data
servers need to be taken into account, too [32]. However, for a first approximation, network
performance is important for deciding where to send or from where to retrieve files.

In order to allow for optimal network usage, tools must be deployed that monitor the network
traffic between various Grid sites. These tools typically reside in the connectivity layer.

3.3. Replica Management

In a Data Grid, data is typically stored in files which can be spread among geographically
distributed Grid sites. The execution time for a job may vary considerably, depending on the
computing resource chosen for job execution, the location of data files to which the job requires
access, and the data access patterns.

Data replication is considered to be an important technique to reduce data access latency
(for reading data) and to increase the robustness of Grid applications. This results in the
reduction of job execution time. In more detail, replication involves the creation of identical
copies of data files and their distribution over various Grid sites.
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Data replication is widely used in database management as well as in distributed systems for
performance and fault tolerance reasons. However, the Grid community tackles the problem
of replication in a slightly different way [30]. Let us briefly discuss the differences with respect
to performance optimization.

Typical transaction-based database management systems are designed to provide consistent
states of data for concurrent updates. One of the most important replication features is to
provide update synchronization among replicated data items. Hence, database replication is
often a trade-off between supporting high performance read access by increasing the replication
factor [32] (i.e. the number of identical replicas for a given file) and thus reducing the write
performance due to higher update requirements. Moreover, traditional database management
systems are deployed in the local area with moderate amounts of data.

On the other hand, in a Data Grid, data volumes reach up to several petabytes. What
is more, data produced by typical large scale scientific experiments is often read-only and
thus no update synchronization like that for databases is required. This allows increasing the
replication factor for both speeding up read performance and increasing fault tolerance without
the trade-off of keeping multiple replicas in synchronization.

Replica management involves a number of low level steps: the data needs to be physically
copied using appropriate transport mechanisms, the correctness of the copy needs to be
checked, the location of replicas needs to be stored in replica catalogs, and finally, consistency
among replicas needs to be preserved both in case of spurious inconsistencies (such as in case
of hardware failure or attacks) and in case of writable replicas. Components in the fabric layer
such as homogeneous data access mechanisms, efficient data transport protocols in the resource
layer, and replica catalogs in the collective layer are required to fulfil these tasks. However,
higher level replica management services should be provided by the Data Grid middleware that
hide most of the complexity of the underlying system and provide the user with a uniform
interface. These services are found in the collective layer.

3.4. Replica Optimization

One of the goals of replica optimization is to minimize file access times by pointing access
requests to appropriate replicas and pro-actively replicating frequently used files based on
access statistics gathered. Replica optimization techniques can thus be divided into:

• replica selection
• replica initiation (automatic creation/deletion)

Replica optimization is tightly coupled with replica management. Often, optimizers are an
integrated part of higher level replica management systems and thus found in the collective
layer.

Replica Selection The replica selection aspect of replica optimization aims to select the best
replica with respect to network and storage access latencies. In other words, if for a given
file several replicas exist, the optimization algorithm determines the replica that should be
accessed from a given location. Similarly, the algorithm may also be used to determine the
best location for new replicas, i.e. where to store additional replicas of an existing file.
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The performance improvement achieved by using a replica optimizer (a Grid service that
takes care of replica selection and initiation) critically depends on the design of an algorithm
that selects one of the replicas of the requested resource. This topic was intensively discussed
in the context of Internet services [19] and distributed database management systems. Each
of the replica selection algorithms may be designed with different goals, different metrics
and different mechanisms for measuring the metrics that are used. For instance, the replica
selection algorithm may aim at maximizing network throughput, reducing the network traffic
on “expensive” links, or reducing the response time of jobs.

Most replica selection algorithms aim at selection of “close” replicas to either reduce response
time or the load on network links. Closeness can be defined by various metrics such as response
time, latency, round-trip time, network bandwidth, number of hops, or geographic proximity.

Replica Initiation The goal of replica initiation is to trigger replication and thus the creation
of new replicas dynamically. The decision about when to create new replicas can be based
on the file access history in order to optimize data locality for frequently requested files. This
assumes that based on historical events we can partially predict future file access. By increasing
the replication factor of a file, one can achieve better load balancing of file requests to less
loaded sites but also fault tolerance in case some sites become unavailable.

In addition to creating new replicas, a replica optimizer can also decide to delete existing
replicas due to several reasons: a file is infrequently requested, access space is required etc.
In this way, the replica optimizer can play a role in optimizing storage space based on access
patterns of a file.

3.5. Scheduling

Scheduling in Grid environments (i.e. global scheduling) is a much more complex task than
scheduling on local clusters (i.e. local scheduling) which is accomplished e.g. by local batch
schedulers like LSF, PBS, or the Maui scheduler. This is due to a number of inherent features
of Grid environments not present in typical HPC, cluster, or local systems:

• resources belong to different administrative domains imposing different local policies;
• some resources may be restricted to accept only a certain subset of jobs managed by a

Grid scheduler; similarly, not all resources accessible may qualify to run a Grid job due
to certain job requirements;

• resources may have different performance characteristics, in particular with respect to
CPU performance, storage system access, and network connectivity;

• Grid schedulers do not have full control over the resources, they do not belong to the
Grid scheduler;

• Grid schedulers do not have full information on all jobs in the system: there will be
multiple Grid schedulers as well as local schedulers concurrently scheduling the same
resources.

As a consequence, a Grid scheduler typically performs the following steps [28]:

1. Resource Discovery: The set of accessible resources is filtered according to authorization
constraints and application requirements.
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2. System Selection: More detailed information on the state of the systems selected by the
previous step is sought (e.g. current system load or status of queues) based on which a
final decision on where to run the jobs is taken.

3. Job Execution: Eventually, the job is to be executed at the chosen site. This step
may involve advanced reservation, job preparation, and job monitoring. Advanced Grid
schedulers may re-consider their decision dynamically and re-schedule jobs if certain
circumstances like high system load prevent the job from being executed efficiently.

In a Data Grid the task of the Grid scheduler is even more difficult since job execution
efficiency not only depends on the computational characteristics of the execution site but also
on the data access characteristics. Hence, a Grid scheduler has to take into account not only
the computational requirements of a job but also its data requirements when making the
scheduling decision. The additional steps the scheduler has to perform can be clustered to the
main traditional steps as follows:

1. Resource Discovery: explore the location of all the input data the job requires as well as
storage resources that are capable of storing the output data.

2. System Selection: the access time (mainly affected by latency and bandwidth) to input
data and output data location needs to be taken into account when making the scheduling
decision. The replication systems discussed above, in particular the replica optimization
systems, may assist the Grid scheduler in this task and replicate data to places from
where it can be accessed more efficiently.

3. Job Execution: jobs requiring frequent access to data are particularly sensitive against
fluctuations in network performance. It is therefore important to dynamically re-consider
the scheduling decisions taken as well as the decision from where to access data. This
re-considering may result in job re-scheduling and/or replication of data to new places
on the fly.

Grid schedulers are typically part of Workload Management Systems residing in the collective
layer. These systems not only perform the scheduling task but also monitor the status of jobs
and provide transactional mechanisms to cope with problems during job execution.

4. Prototype Systems

Many projects are currently building Grid infrastructures including middleware solutions
suitable for performance engineering in Grids. In this section we review some of the major
Grid middleware projects with respect to the issues discussed above. We selected projects that
explicitly deal with Data Grids. Note that our selection is by no means comprehensive and
that the four projects do not necessarily have the same aims. For example, Globus and Condor
typically provide more lower level middleware whereas EDG and SRB are more higher level
tools. After the discussion of the individual projects we provide a summary of our findings.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:0–0
Prepared using cpeauth.cls



14 E. LAURE, H. STOCKINGER, K. STOCKINGER

4.1. European DataGrid (EDG)

http://www.edg.org

Data Access EDG has a hierarchical storage model where data can reside on three different
levels, namely on disk, on the disk cache of a mass storage system, and on tape. Data is managed
via a unique interface that is called Storage Element (SE). The SE has similar functionality
to a Storage Resource Manager (SRM) [8], a proposal for a unified interface to hierarchical
storage systems. The main purpose of the SE is data and space management.

In addition, the SE provides performance information about the access latencies of files
with various sizes. The access latency is calculated based on the location of the file, file access
history, and job queues of the mass storage system.

Networking The network traffic on the EDG testbed is monitored at certain intervals using
iperf [34]. This information is used for estimating the file transfer time between various sites on
the wide area. The calculation of the total file access latency consists of the estimated transfer
time and the access latency of the underlying storage system.

Replica Management The Replica Management Service called Reptor [18, 22] provides access
to fast and secure transfer mechanisms based on GridFTP. Replica information is kept
consistent in the distributed replica catalog referred to as the Replica Location Service [10].

Reptor manages data and associated meta-data by taking into account information provided
by several Grid monitoring tools such as the Information Service and the Network Monitor.
The implementation of Reptor is based on the web service paradigm in accordance with the
emerging Open Grid Service Architecture.

Replica Optimization Within the replication framework, optimized replica selection is
achieved by calculating the access latencies of the replicas and choosing the one with minimal
access costs. Both network transfer times and storage access latencies are taken into account.

Scheduling The goal of EDG’s Workload Management System (WMS) is to manage Grid
resources conveniently, efficiently and effectively [36] based on the following components:
the User Interface, the Resource Broker, the Job Submission Service, and the Logging and
Bookkeeping Service.

The user interacts with the WMS via a User Interface that allows, among others, to submit
jobs, control the execution of a job, and retrieve a job’s output. A job is represented by a
Job Description that is expressed via a Job Description Language (JDL). Jobs may either be
sequential or parallel applications using MPI [26].

The task of the Resource Broker is to find the best match between the requirements of the
jobs and the available Grid resources. In order to perform this optimization, the Resource
Broker consults the Replica Management Service to retrieve information about the location of
required input files and the Information Service about the current load of the computing and
storage resources. The result of the optimization is a matching computing resource where the
executing job has access to all resources specified in the Job Description Language, such as
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CPU requirements or storage space. It is worth noting that parallel applications are scheduled
to run on a single Grid site (which may be a large cluster or HPC system) and are not
distributed among multiple sites.

4.2. Globus

http://www.globus.org

Data Access Globus provides a number of tools for data management in Grid systems.
GridFTP [1] is a high-performance, secure protocol based tool for parallel data transfer, partial
file transfer, and third-party (server-to-server) data transfer. Globus does not support mass
storage system access. In addition, a reliable file transfer service (RFT) is included in the latest
Globus version.

Networking Globus does not support networking optimization.

Replica Management Globus also includes tools for managing data replicas, namely the
Replica Catalog and the Replica Manager. Currently, Globus supports two versions of
catalogs, an LDAP based and an SQL-based flavor. The latter is called RLS - (Replica
Location Service) [10] and was jointly designed and developed between Globus and the “Data
Management Workpackage” of the EU Data Grid Project to maintain distributed information
of replicas. The Replica Manager is based on GridFTP and the LDAP based replica catalog
to provide basic replica management features.

Replica Optimization Globus does not support replica optimization.

Scheduling The Globus Resource Allocation Manager (GRAM) processes the requests for
resources for remote application execution, allocates the required resources, and manages
the active jobs. In addition, GRAM provides updated information about the capabilities and
availability of the computing resources to the Metacomputing Directory Service (MDS), i.e.
the Information Service.

GRAM provides an API for submitting and canceling a job request, as well as checking
the status of a submitted job. The specifications are written by the user in the Resource
Specification Language (RSL), and is processed by GRAM as part of the job request.

However, data locality issues are not considered in the scheduling phase. What is more,
automatic job scheduling is not supported.

4.3. Condor

http://www.cs.wisc.edu/condor/

Data Access Storage requirements of Condor jobs are managed by NeST [7], which is a
flexible, software-only storage appliance. NeST provides a generic data transfer architecture
that supports multiple data transfer protocols such as GridFTP and NFS. Due to its dynamic,
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self-adapting behavior, it runs efficiently on a wide range of hardware and software platforms.
Moreover, NeST allows for management of storage space, mechanisms for resource and data
discovery, user authentication and quality of service.

NeST does not support access to mass storage systems.

Networking Condor does not support networking optimization.

Replica Management Condor does not support replica management.

Replica Optimization Condor does not support replica optimization.

Scheduling Condor-G [4] is a task broker to schedule and manage thousands of jobs in a typical
distributed Grid computing environment. It provides job monitoring, logging, notification,
policy enforcement, fault tolerance, credential management.

Dependencies between jobs are managed by DAGMan (Directed Acyclic Graph Manager)
which is a meta-scheduler for Condor. A directed acyclic graph (DAG) can be used to represent
a set of programs where the input, output, or execution of one or more programs is dependent
on one or more other programs. DAGMan is responsible for scheduling, recovery, and reporting
for the set of programs submitted to Condor.

In Condor, data transfers for copying, replicating and staging are called Data Placement
(DaP) activities. Currently, a DaP scheduler named Stork is being developed to intelligently
schedule both computational and data jobs to increase disk usage and throughput while
decreasing I/O latencies.

Note that Condor does not support automatic scheduling as it is done in EDG.

4.4. SRB

http://www.npaci.edu/DICE/SRB

Data Access The Storage Resource Broker (SRB) [3] is a client-server based middleware tool
which provides distributed clients with uniform access to different types of storage devices,
diverse storage resources, and replicated data sets in a heterogeneous computing environment.

SRB provides its own Mass Storage System (MSS) that enables users to economically build
their own mass storage system in which data migrate automatically between cache and tape.
In addition, it is integrated with the High Performance Storage System (HPSS) for archival
storage.

Networking By incorporating automatic parallel data transfers the SRB optimizes and
matches the transfer to the network and server export rates, resulting in robust and fast
transfers.

Replica Management The SRB client-server system solves many problems associated with
traditional file systems. The SRB supports virtual collections consisting of digital entities
scattered across distributed, heterogeneous storage resources, including file systems, archives,
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and databases. These differences are transparent to users, negotiating all protocols, access
permissions, etc. across multiple sites.

Metadata about the files is handled by the MCAT metadata catalog which allows for
searching, accessing, and managing collections of data. MCAT is implemented with relational
database technology and has been ported to work with Oracle, SQLServer, DB2, Sybase and
Postgres.

The SRB synchronizes replicated data to ensure accurate mirroring and reliable file transfers
using a persistent transfer mode that automatically retries transfers as needed.

Replica Optimization A so-called SRB Grid Brick provides a cost-effective, uniform data
management environment using a Linux PC running only SRB to manage 1 to 2 terabytes
of local disk. One can group multiple Grid Bricks into a single logical resource in order to
guarantee a single file space. Grid bricks can be distributed over a network but will still
appear as a single resource.

Replica selection is based on storage latency, however, network based replica selection is not
supported.

Scheduling Using distributed SRB Grid Bricks, users can employ seamless, round-robin,
random placement load-sharing. However, automatic wide area scheduling is not supported.

4.5. Summary of Observations

Project Data Access Networking Replica Mgmt. Replica Opt. Scheduling

EDG yes yes yes yes yes
Globus partially no yes no partially
Condor partially no no no partially
SRB yes partially yes partially partially

Table II. Performance Engineering Methods of Selected Prototype Systems.

On having discussed the main Grid middleware implementations, we will now summarize the
main performance engineering approaches of these projects. Table II provides an overview of
the performance methods that are implemented in the selected prototype systems we discussed
before. In particular, we identified the following levels of performance optimization:

• Access estimation and optimization of storage devices: especially for data intensive
applications access latencies to tertiary storage systems are the main bottleneck. Access
estimates have to take into consideration disk and tape latencies and turn around times
of the batch systems that queue data intensive jobs. Important optimization techniques
include intelligent caching of frequently used files on those storage systems that have, on
the one hand, the lowest access latencies, but are, on the other hand, close to the CPU
that request this data.
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• Access estimation and optimization of network devices: Typical approaches include
monitoring the network traffic and supporting parallel streams for file transfers.

• Replica management: One of the goals is to replicate files to those places where files are
accessed.

• Replica optimization: Based on access latencies and network bandwidth estimates,
replicas are selected.

• Job scheduling: Jobs are scheduled to those places that have the best CPU capacities
taking into account data localities. Typical goals are to optimize the throughput of the
whole system and balance the load in an intelligent way over the available Grid resources.

Grid middleware is very complex software that has to deal with all the uncertainties and
changing characteristics of a Grid environment. To better analyze the impact of certain
middleware components, Grid simulators have been developed. For instance, inside EDG a Grid
simulator called OptorSim [5, 6] has been developed in order to understand the performance
issues of a complex Data Grid environment. The simulator is based on the topology of a
typical Data Grid and comprises several scheduling and data replication algorithms to study
the performance of Grid jobs with various access pattern characteristics. In addition, one can
also study the impact of various network configurations and storage systems. One of the goals is
to provide a set of Grid benchmarks similar to well established benchmarks from the database
community to evaluate the performance of query optimizers.

Within U.S. Grid projects, a simulator with similar goals was implemented which is called
ChicagoSim [27].

5. Conclusions

In this paper we provided an overview of Grid performance engineering mechanisms for
optimizing the performance of tasks (jobs) within a typical Data Grid. We categorized the
techniques into five aspects: data access, networking, replica management, replica optimization
and scheduling. Next, we evaluated four selected Grid prototype implementations and discussed
the currently implemented performance engineering approaches.

The goal of this paper was to provide a characterization and a set of mechanisms for
improving the performance of currently deployed Data Grids. In addition, these performance
engineering tools can serve as the basis for establishing a framework to compare the
performance of different Grid environments. Our vision is to create typical Grid benchmarks
similar to what is known in the database community for comparing the performance of query
optimizers of different software vendors. The categorization work in this paper is a vital
prerequisite for achieving this goal.
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